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§  HLIR is part of the ARES project (Abstract 
Representations for the Extreme-Scale Stack) 

§  Inter-operable tools and approaches for 
programming next-generation architectures 

§  LANL (Pat McCormick) + ORNL (Jeffrey Vetter) 
§  Funded by: Advanced Scientific Computing 

Research, Office of Science, of the United 
States Department of Energy  

About ARES 
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§  LLVM remains a purely sequential 
representation while parallel programming is 
becoming increasingly ubiquitous with the end of 
Moore’s law. 

 
§  Parallel functionality is often achieved through 

libraries, but use of libraries alone lead to 
missed optimization opportunities and 
programmability challenges. 

HLIR Motivation 
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§  Essential information about high level structures 
of the program is lost such as loops and typically 
has to be reconstructed from IR. 

  
§  Approaches such as Clang’s OpenMP perform 

analysis/transformations in the front-end. It 
would be preferable to write such parallel 
transformations once in the backend for 
targeting by multiple frontends. 

HLIR Motivation 
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§  Adding parallel extensions directly to LLVM is a 
challenging problem; adds complexity and would 
be very disruptive to core features of LLVM, e.g. 
control flow graph analysis and other types of 
analysis 

 
§  IR alone is perhaps too low-level; sequential 

may not be the best form; we posit the need for 
an AST-like representation 

 

HLIR Motivation 
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§  To address these concerns and needs we created HLIR 
(High Level Intermediate Representation)… to allow 
multiple frontends to target parallel functionality 

 
§  HLIR is an extension of LLVM, taking advantage of 

LLVM’s broad capabilities and infrastructure – HLIR can 
be viewed as a superset of LLVM. 

§  HLIR = representation + code generation / runtime 
interface 

HLIR 
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Our current implementation supports:  

§  tasks 

§  parallel for 

§  parallel reduce 

§  communication and synchronization building blocks 

Parallel Constructs 
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§  Extensibility 
§  Ease of use 
§  Human readable and in-memory representations 
§  Targetable by diverse types of frontends: C++, 

Fortran, … any language that uses LLVM for 
code generation 

§  Nested/hierarchical to represent AST-like 
structures such as parallel for loops 

§  Mutability and successive transformation 
 

HLIR Features 
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HLIR
LLVM IR +

HLIR 
Intrincis

HLIR PassIR + Calls to HLIR 
RuntimeExecutable

HLIR
Runtime 
Library

C++
Frontend

Fortran
Frontend

Charm++
Frontend

Lex/Parse/Sema

Lex/Parse/Sema

CodeGen

CodeGen

HLIR Flow 
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§  HLIR module – one-to-one correspondence with IR 
module 

§  HLIR module provides methods for creating parallel 
constructs, e.g. parallel for, contains top-level metadata 

§  For example, in the case of parallel for/reduce, HLIR 
sets up an outlined function and provides entry points for 
the body to be defined or induction or reduce variables 
retrieved 

HLIR Module 
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Sample HLIR Representation 
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§  Leaf nodes: symbol, string, floating, integer, IR Value, IR 
Type, arbitrary sequence of IR wrapped in function, etc. 

§  Dynamic/flexible, recursive nodes – heterogenuos types 
– vector, symbol map 

§  Constructs: Parallel For/Reduce, Task, etc. Constructs 
have key-mapped values, e.g: body, induction var, return 
type, etc.  

HLIR nodes 
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§  One of the important benefits/abstractions that 
HLIR provides is capturing of data dependencies 
and bundling them up into a struct so that can be 
queued along with a function ptr to outlined 
function to our thread pool. 

§  A front-end performing code generation can 
conveniently neglect that values appearing 
within, e.g. a task body were defined externally. 

Data Dependencies & Capturing 
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§  Simple prototype runtime – defines an ABI interface 
which is potentially swappable with a different runtime 

§  Uses Argonne Argobots user-level threads => yield(), 
solves recursion problem, thread waits while occupying 

  
§  Thread pool, depth, synch 
§  Synchronization – barrier, “virtual” semaphores 
§  Communication building blocks – channels, message 

handlers 
 

Runtime 
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§  Body specified by frontend => outline, data 
capturing 

 
§  Transform calls to task-marked functions into 

HLIR intrinsic for task launch 
§  The return value becomes a future, HLIR pass 

looks for uses of this value and turns them into 
runtime calls to yield/await this future. 

Tasks Implementation 
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§  Body specified by frontend => outline, data 
capturing, same machinery as task 

 
§  Nested parallel for/reduce loops add complexity, 

data dependencies are unwrapped, and re-
queued at each level 

§  Parallel Reduce – divide and conquer – entire 
algorithm code generated 

Parallel For/Reduce Implementation 
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§  We implemented a proof of concept frontend by 
extending Clang to target HLIR. Adds first-class 
support for tasks and parallel for/reduce 

§  Only required <= approximately 100 lines of 
code added to Clang for each construct 

Clang-based Frontend 
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!
 task int fib(int i){ !
   if(i <= 1){ !
     return i; !
   } !
   return fib(i− 1) + fib(i− 2); !
 } !

Clang-based Frontend - Tasks 
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   !
!
   float A[SIZE]; !
   for(auto i : Forall(0 , SIZE)){ !
     A[i] = i; !
   } !
 

Clang-based Frontend – Parallel For 
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   !
!
  !

  float sum = 0.0; !
  for(auto i : ReduceAll(0 , SIZE, sum)){ !
    sum += 1.0; !
  } !

Clang-based Frontend – Parallel Reduce 
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§  Open64 
§  Diderot 
§  GCC Gimple 
§  OpenARC 
§  OpenCL SPIR 
§  Scout, Kokkos Clang (LANL) 

Related Work 
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§  Additional parallel constructs, e.g. data layout and memory 
placement, data parallel, etc. 

§  Distributed functionality, integrate with communication 
infrastructure, tasks: data dependence 

§  Optimize execution/runtime, depth, priority, chunking parallel 
for, etc. 

§  Next phase: targeting/extending HLIR with OpenMP/
OpenACC/pragma-based semantics 

Future Work 
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§  Multiple frontends can target HLIR to benefit 
from a centrally optimized lowering and runtime 
system 

§  Target at a high-level while attaining benefits of 
low-level code generation and optimization 

§  Flexible and hierarchical, extensibility  

Conclusion 
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§  Thanks for your time! 

§  ARES HLIR can be found at: 
    https://github.com/losalamos/ares 
 
§  Questions? 

Questions?   
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