
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

The ARES High-level Intermediate
Representation

Nick Moss, Kei Davis, Pat McCormick

11/14/16

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

§  HLIR is part of the ARES project (Abstract
Representations for the Extreme-Scale Stack)

§  Inter-operable tools and approaches for
programming next-generation architectures

§  LANL (Pat McCormick) + ORNL (Jeffrey Vetter)
§  Funded by: Advanced Scientific Computing

Research, Office of Science, of the United
States Department of Energy

About ARES

Slide 2

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

§  LLVM remains a purely sequential
representation while parallel programming is
becoming increasingly ubiquitous with the end of
Moore’s law.

§  Parallel functionality is often achieved through

libraries, but use of libraries alone lead to
missed optimization opportunities and
programmability challenges.

HLIR Motivation

Slide 3

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

§  Essential information about high level structures
of the program is lost such as loops and typically
has to be reconstructed from IR.

§  Approaches such as Clang’s OpenMP perform

analysis/transformations in the front-end. It
would be preferable to write such parallel
transformations once in the backend for
targeting by multiple frontends.

HLIR Motivation

Slide 4

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

§  Adding parallel extensions directly to LLVM is a
challenging problem; adds complexity and would
be very disruptive to core features of LLVM, e.g.
control flow graph analysis and other types of
analysis

§  IR alone is perhaps too low-level; sequential

may not be the best form; we posit the need for
an AST-like representation

HLIR Motivation

Slide 5

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

§  To address these concerns and needs we created HLIR
(High Level Intermediate Representation)… to allow
multiple frontends to target parallel functionality

§  HLIR is an extension of LLVM, taking advantage of

LLVM’s broad capabilities and infrastructure – HLIR can
be viewed as a superset of LLVM.

§  HLIR = representation + code generation / runtime
interface

HLIR

Slide 6

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

Our current implementation supports:

§  tasks

§  parallel for

§  parallel reduce

§  communication and synchronization building blocks

Parallel Constructs

Slide 7

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

§  Extensibility
§  Ease of use
§  Human readable and in-memory representations
§  Targetable by diverse types of frontends: C++,

Fortran, … any language that uses LLVM for
code generation

§  Nested/hierarchical to represent AST-like
structures such as parallel for loops

§  Mutability and successive transformation

HLIR Features

Slide 8

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

Lex/Parse/Sema CodeGen

HLIR
LLVM IR +

HLIR
Intrincis

HLIR PassIR + Calls to HLIR
RuntimeExecutable

HLIR
Runtime
Library

C++
Frontend

Fortran
Frontend

Charm++
Frontend

Lex/Parse/Sema

Lex/Parse/Sema

CodeGen

CodeGen

HLIR Flow

Slide 9

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

§  HLIR module – one-to-one correspondence with IR
module

§  HLIR module provides methods for creating parallel
constructs, e.g. parallel for, contains top-level metadata

§  For example, in the case of parallel for/reduce, HLIR
sets up an outlined function and provides entry points for
the body to be defined or induction or reduce variables
retrieved

HLIR Module

Slide 10

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

Sample HLIR Representation

Slide 11

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

§  Leaf nodes: symbol, string, floating, integer, IR Value, IR
Type, arbitrary sequence of IR wrapped in function, etc.

§  Dynamic/flexible, recursive nodes – heterogenuos types
– vector, symbol map

§  Constructs: Parallel For/Reduce, Task, etc. Constructs
have key-mapped values, e.g: body, induction var, return
type, etc.

HLIR nodes

Slide 12

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

§  One of the important benefits/abstractions that
HLIR provides is capturing of data dependencies
and bundling them up into a struct so that can be
queued along with a function ptr to outlined
function to our thread pool.

§  A front-end performing code generation can
conveniently neglect that values appearing
within, e.g. a task body were defined externally.

Data Dependencies & Capturing

Slide 13

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

§  Simple prototype runtime – defines an ABI interface
which is potentially swappable with a different runtime

§  Uses Argonne Argobots user-level threads => yield(),
solves recursion problem, thread waits while occupying

§  Thread pool, depth, synch
§  Synchronization – barrier, “virtual” semaphores
§  Communication building blocks – channels, message

handlers

Runtime

Slide 14

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

§  Body specified by frontend => outline, data
capturing

§  Transform calls to task-marked functions into

HLIR intrinsic for task launch
§  The return value becomes a future, HLIR pass

looks for uses of this value and turns them into
runtime calls to yield/await this future.

Tasks Implementation

Slide 15

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

§  Body specified by frontend => outline, data
capturing, same machinery as task

§  Nested parallel for/reduce loops add complexity,

data dependencies are unwrapped, and re-
queued at each level

§  Parallel Reduce – divide and conquer – entire
algorithm code generated

Parallel For/Reduce Implementation

Slide 16

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

§  We implemented a proof of concept frontend by
extending Clang to target HLIR. Adds first-class
support for tasks and parallel for/reduce

§  Only required <= approximately 100 lines of
code added to Clang for each construct

Clang-based Frontend

Slide 17

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

!
 task int fib(int i){ !
 if(i <= 1){ !
 return i; !
 } !
 return fib(i− 1) + fib(i− 2); !
 } !

Clang-based Frontend - Tasks

Slide 18

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

 !
!
 float A[SIZE]; !
 for(auto i : Forall(0 , SIZE)){ !
 A[i] = i; !
 } !

Clang-based Frontend – Parallel For

Slide 19

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

 !
!
 !

 float sum = 0.0; !
 for(auto i : ReduceAll(0 , SIZE, sum)){ !
 sum += 1.0; !
 } !

Clang-based Frontend – Parallel Reduce

Slide 20

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

§  Open64
§  Diderot
§  GCC Gimple
§  OpenARC
§  OpenCL SPIR
§  Scout, Kokkos Clang (LANL)

Related Work

Slide 21

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

§  Additional parallel constructs, e.g. data layout and memory
placement, data parallel, etc.

§  Distributed functionality, integrate with communication
infrastructure, tasks: data dependence

§  Optimize execution/runtime, depth, priority, chunking parallel
for, etc.

§  Next phase: targeting/extending HLIR with OpenMP/
OpenACC/pragma-based semantics

Future Work

Slide 22

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

§  Multiple frontends can target HLIR to benefit
from a centrally optimized lowering and runtime
system

§  Target at a high-level while attaining benefits of
low-level code generation and optimization

§  Flexible and hierarchical, extensibility

Conclusion

Slide 23

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

§  Thanks for your time!

§  ARES HLIR can be found at:
 https://github.com/losalamos/ares

§  Questions?

Questions?

Slide 24

