
Dmitry Denisenko

Intel Programmable Solutions Group

November 13, 2016, LLVM-HPC3 SC’16, Salt Lake City, UT

Programmable Solutions Group

FPGAs are Everywhere!

Cellular

Basestations

Wireless LAN

Switches

Routers

Optical

Metro

Access

Broadband

Audio/video

Video display

Studio

Satellite

Broadcasting

Medical

Test equipment

Manufacturing

Card readers

Control systems

ATM

Navigation

Entertainment

Secure comm.

Radar

Guidance and control

Wireless

Networking

Wireline

Entertainment

Broadcast

Automotive

Instrumentation Military

Security &

Energy Management

Servers

Mainframe

RAID

SAN

Copiers

Printers

MFP

Computers

Storage

Office

Automation

Consumer

Automotive

Test, Measurement,

& Medical
Communications

Broadcast

Military &

Industrial

Computer &

Storage

Programmable Solutions Group

Spectrum of approaches to high performance

4

Fine-Grained
Massively
Parallel
Arrays

FPGAsDSPsCPUs

Single Cores
Coarse-Grained
Massively
Parallel
Processor
Arrays

Multi-Cores
Coarse-Grained
CPUs and DSPs

Multi-Cores Arrays

Programmable Solutions Group

What’s in my FPGA?

5

DSPs

 Dedicated single-precision floating point

multiply and accumulators

Block RAMs

 Small embedded memories that can be

stitched to form an arbitrary memory

system

Arithmetic Logic Modules

 Implement arbitrary logic functions

Programmable Interconnect

 Programmable routing that can build

arbitrary topologies

X

+

Programmable Solutions Group 6

FPGA Hardware Design

Idle

Request

Ack

Do
Useful

Work

Done

State Machines Datapaths

-1
0
1

=

Idle

Request

Ack

Do
Useful

Work

Done
-1
0
1

=

S
O

C
 I

n
te

rc
o
n
n
e
c
t

125

MHz

250

MHz

B
ri
d
g
e

P
C

Ie
C

o
re

200

MHz

400

MHz

C
o
n
tr

o
lle

r

M
e
m

o
ry

 P
H

Y

Programmable Solutions Group

Hardware Design Entry Complexity

Traditional description of these circuits is done through Hardware Design

Languages such as VHDL or Verilog.

Incredibly detailed design must be done before a first working version is possible

 Cycle by cycle behavior must be specified for every register in the design

 The complete flexibility of the FPGA means that the designer needs to specify all aspects

of the hardware circuit

– Buffering, Arbitration, IP Core interfacing, etc

7

Programmable Solutions Group

Why OpenCL on FPGAs

8

ASIC

FPGA
Programmers

Parallel

Programmers

Standard CPU Programmers

Intel FPGA SDK for OpenCL is an

LLVM-based compiler that raises the

level of abstraction for FPGA design

to make it accessible to more people.

Programmable Solutions Group

FPGAs vs CPUs

10

FPGAs are dramatically different than CPUs

• Massive fine-grained parallelism

• Complete configurability

• Huge internal bandwidth

• No callstack

• No dynamic memory allocation

• Very different instruction costs

• No fixed number of program registers

• No fixed memory system

• Much more flexibility with data types

Programmable Solutions Group

Targeting an Architecture

11

In a CPU, the program is mapped to a fixed architecture

In an FPGA, there is NO fixed architecture

The program defines the architecture

12

Programmable Solutions Group

B

A

A
ALU

A simple 3-address CPU

13

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData

Programmable Solutions Group

B

A

A
ALU

Load memory value into register

14

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData

Programmable Solutions Group

B

A

A
ALU

Add two registers, store result in register

15

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData

Programmable Solutions Group

A simple program

16

Mem[100] += 42 * Mem[101]

CPU instructions:

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]

Programmable Solutions Group

CPU activity, step by step

17

A

A

A

A

A

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]
A

Time

Programmable Solutions Group

Unroll the CPU hardware…

18

A

A

A

A

A

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]
A

Space

Programmable Solutions Group

… and specialize by position

19

A

A

A

A

A

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]
A

1. Instructions are fixed.

Remove “Fetch”

Programmable Solutions Group

… and specialize

20

A

A

A

A

A

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]
A

1. Instructions are fixed.

Remove “Fetch”

2. Remove unused ALU ops

Programmable Solutions Group

… and specialize

21

A

A

A

A

A

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]
A

1. Instructions are fixed.

Remove “Fetch”

2. Remove unused ALU ops

3. Remove unused Load / Store

Programmable Solutions Group

… and specialize

22

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]

1. Instructions are fixed.

Remove “Fetch”

2. Remove unused ALU ops

3. Remove unused Load / Store

4. Wire up registers properly!

And propagate state.

Programmable Solutions Group

… and specialize

23

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]

1. Instructions are fixed.

Remove “Fetch”

2. Remove unused ALU ops

3. Remove unused Load / Store

4. Wire up registers properly!

And propagate state.

5. Remove dead data.

Programmable Solutions Group

Optimize the Datapath

24

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]

1. Instructions are fixed.

Remove “Fetch”

2. Remove unused ALU ops

3. Remove unused Load / Store

4. Wire up registers properly!

And propagate state.

5. Remove dead data.

6. Reschedule!

Programmable Solutions Group

Data parallel kernel

25

__kernel void
sum(__global const float *a,
__global const float *b,
__global float *answer)
{
int xid = get_global_id(0);
answer[xid] = a[xid] + b[xid];
}

float *a =

float *b =

float *answer =

0 1 2 3 4 5 6 7

7 6 5 4 3 2 1 0

7 7 7 7 7 7 7 7

__kernel void sum(…);

Programmable Solutions Group

Example Datapath for Vector Add

26

On each cycle the portions of the

datapath are processing different threads

While thread 2 is being loaded, thread 1

is being added, and thread 0 is being

stored

Load Load

Store

0 1 2 3 4 5 6 7

8 work items for vector add example

+

Thread IDs

Programmable Solutions Group

Example Datapath for Vector Add

27

On each cycle the portions of the

datapath are processing different threads

While thread 2 is being loaded, thread 1

is being added, and thread 0 is being

stored

Load Load

Store

0
1 2 3 4 5 6 7

8 work items for vector add example

+

Thread IDs

Programmable Solutions Group

Example Datapath for Vector Add

28

On each cycle the portions of the

datapath are processing different threads

While thread 2 is being loaded, thread 1

is being added, and thread 0 is being

stored

Load Load

Store

0

1
2 3 4 5 6 7

8 work items for vector add example

+

Thread IDs

Programmable Solutions Group

Example Datapath for Vector Add

29

On each cycle the portions of the

datapath are processing different threads

While thread 2 is being loaded, thread 1

is being added, and thread 0 is being

stored

Load Load

Store

1

2

3 4 5 6 7

8 work items for vector add example

+

0

Thread IDs

Programmable Solutions Group

Example Datapath for Vector Add

30

On each cycle the portions of the

datapath are processing different threads

While thread 2 is being loaded, thread 1

is being added, and thread 0 is being

stored

Load Load

Store

2

3

4 5 6 7

8 work items for vector add example

+

0

1

Thread IDs

Programmable Solutions Group

Real scheduling example

// OpenCL kernel

kernel void example (

global float * restrict in,

global float * restrict in2,

global float * restrict out) {

int k = get_global_id(0);

float x = in[k];

float y = in2[k];

out[k] = x + (y + 1.0f);

}

31

Three GEPs are executed

at the same time.

Cycle # at which instruction

starts executing.

Two loads (and one store

below) are separate

pieces of hardware,

execute concurrently for

this thread.

Two floating-point adders

depend on each other,

execute sequentially for

this thread.

Hardware block

containing all PHIs.

Special hardware-only

optimization construct.

Contains inter-BB branch

control or ‘ret.’

Dependencies between

instructions are constraints

to the scheduler.

Programmable Solutions Group

Compiler Flow

33

AOC

FPGA

Programming File
kernel void
sum(global float *a,

global float *b,
global float *c)

{
int gid = get_global_id(0);
c[gid] = a[gid] + b[gid];

}

Source Code Intel FPGA SDK

for OpenCL

LLCOPTClang

Verilog

Design File

Frontend

Parses OpenCL extensions and intrinsics to

produce LLVM IR

Clang OPT

Middle end

Clang –O3 optimizations followed by

numerous custom passes to target the FPGA

architecture

LLC

Backend

Creates and schedules an elastic pipelined

datapath and produces Verilog HDL

LLVM IR is used to describe a custom

architecture specific to the program

Quartus is FPGA CAD Tool

Runs hardware synthesis, place, route, timing

analysis and more. Produces FPGA

programming bitstream. Takes hours.

34

Programmable Solutions Group

Branch Conversion

35

Control flow is expensive.

Instead, execute both sides of a branch, pick the result for the “true” path, and

predicate commands that have side-effects.

If a function has no loops, the whole function loses all branches.

Loops lose all internal branches.

1. X = W;

2. if (cond) {

3. X += 2;

4. array[z] = Y;

5. }

X_temp = X + 2;

X = cond ? X_temp : W;

array[z] = Y only if cond

?: operator is a mux

(selector) in hardware.

Single IR instruction to store only if

condition is true. “cond” is predicate on

the store unit. Requires store IR

instruction to accept predicate.

Programmable Solutions Group

Local memory address space splitting

36

FPGAs lack seamless memory hierarchy that CPUs have.

We use memory address spaces to distinguish different memory locations: on-chip,

off-chip, and special types of off-chip memory (e.g. constant, QDR, HMC).

On-chip (aka local memory) is further split into multiple address spaces based on

access patterns for much better implementation efficiency:

Split is possible only if compiler can prove that pointers to a[] and b[] never mix.

int local_mem_user(…) {

int a[SIZE];

int b[SIZE];

<code that accesses a[]>

<code that accesses b[]>

}

a []

b []

a []

b []

space 5
space 6

space 7

Programmable Solutions Group

Optimizing Bit Swizzling

37

Bit swizzling with compile-time known pattern (e.g. bit reversal) is free on FPGA.

Without optimization, IR above is a very expensive tree of ORs and ANDs.

Compiler detects such an IR tree and turns it into a single shufflevector instruction.

int bit_reverse(int x) {

int output = 0;

#pragma unroll

for (int i = 0; i < 32; i++) {

output <<= 1;

if (x & 1) output |= 1;

x >>= 1;

}

return output;

}

input

output

38

Programmable Solutions Group

Data-Parallel Execution

39

On the FPGA, we use pipeline parallelism to achieve acceleration

Threads execute in an embarrassingly parallel manner.

Ideally, all parts of the pipeline are active at the same time.

kernel void
sum(global const float *a,

global const float *b,
global float *c)

{
int xid = get_global_id(0);
c[xid] = a[xid] + b[xid];

}

Load Load

Store

+
0

1

2

Programmable Solutions Group

Data-Parallel Execution - drawbacks

40

Difficult to express programs which have partial dependencies during execution

Would require complicated hardware and new language semantics to describe the
desired behavior

Load Load

Store

+
0

1

2kernel void
sum(global const float *a,

global const float *b,
global float *c)

{
int xid = get_global_id(0);
c[xid] = c[xid-1] + b[xid];

}

Programmable Solutions Group

Loop-pipelining

41

Allow users to express programs as a single-thread

Pipeline parallelism still leveraged to efficiently execute loops via loop pipelining –

multiple loop iterations are executed concurrently.

for (int i=1; i < n; i++) {
c[i] = c[i-1] + b[i];

}

Programmable Solutions Group

Loop Pipelining Example

42

No Loop Pipelining

i0

i1

i2

C
lo

c
k
 C

y
c
le

s

No Overlap of Iterations!
Finishes Faster because Iterations

Are Overlapped

i0

i1

i2

i3

i4

i5

C
lo

c
k
 C

y
c
le

s

Looks almost like multi-

threaded execution!

With Loop Pipelining

Loop Pipelining enables Pipeline Parallelism AND the

communication of state information between iterations.

Programmable Solutions Group

Loop-Carried Dependencies

44

Loop-carried dependencies are dependencies where one iteration of the loop

depends upon the results of another iteration of the loop

The variable state in iteration 1 depends on the value from iteration 0.

kernel void state_machine(ulong n)
{
t_state_vector state = initial_state();
for (ulong i=0; i<n; i++) {
state = next_state(state);
unit y = process(state);
write_output(y);

}
}

Programmable Solutions Group

Loop-Carried Dependencies

45

To achieve acceleration, we pipeline each iteration of a loop with loop-carried

dependencies

 Analyze any dependencies between iterations

 Schedule these operations

 Launch the next iteration as soon as the critical dependency is calculated

At this point, we can

launch the next

iteration

kernel void state_machine(ulong n)
{
t_state_vector state = initial_state();
for (ulong i=0; i<n; i++) {
state = next_state(state);
unit y = process(state);
write_output(y);

}
}

Programmable Solutions Group

Trouble with Loop-Carried Dependencies

46

Many things can go wrong with loop pipelining:

 Loop-carried dependency takes too long to compute.

 Loop iterations may get out of order.

Consequences of having a loop-carried dependency are severe:

 If introduce dependency on global location: loop initialization internal can go from 1 to ~70.

– That’s 70x drop in performance!

 The compiler has to be good at analyzing and reporting these dependencies!

47

Programmable Solutions Group

Benefits

LLVM is awesome!

Programmable Solutions Group

Challenges

49

Our instruction costs are wildly different from CPUs.

Well formed loops are extremely important to us but …

 Our ideal loop form is not the same as for CPU. Never want loops replicated or put inside a

condition. Often no point in hoisting if there is no dependency.

Need many custom intrinsics to better model our hardware:

 Load/store units with additional arguments: predicates, byte-enables, dependencies.

 Channels to express communication between parallel tasks.

Have to use debug data to carry additional information:

 Have “styles” of load/store units and even multipliers (high throughput, low area)

Can’t express instruction-level, block-level, and task-level parallelisms:

 Only decide on this in the backend, and it’s late or very expensive to do optimizations then.

50

