Targeting FPGAs with an
LLVM compiller

Dmitry Denisenko

Intel Programmable Solutions Group

November 13, 2016, LLVM-HPC3 SC’16, Salt Lake City, UT

F
P
G
JA
O
ver
\Y;
e
W

FPGAs are Everywhere!

Test, Measurement,

. il Computer &
Consumer & Medical Military & p

Communications

Automotive Broadcast Industrial Storage

Entertainment Instrumentation Wireless Military Computers
Broadband Medical Cellular Secure comm. Servers
Audio/video Test equipment Basestations Radar Mainframe
Video display Manufacturing Wireless LAN Guidance and control
. . Storage
Automotive Networking Security & RAID 9
Navigation Switches Energy Management SAN
Entertainment Routers Card readers
o Control systems Office
Wireline ATM Automation
Optical .
Metro qulers
Access Printers
MFP
Broadcast
Studio
Satellite

Programmable Solutions Group

Broadcasting

Spectrum of approaches to high performance

Multi-Cores
Single Cores Multi-Cores Coars.e-Grained Fine-Grained
Coarse-Grained Massively Massively
CPUs and DSPs Parallel Parallel
Processor Arrays
Arrays

Programmable Solutions Group |nte| l

What's in my FPGA?

» Dedicated single-precision floating point u

I
multiply and accumulators I

Block RAMs

= Small embedded memories that can be
stitched to form an arbitrary memory
system

ATITENYNNYY YN YN NYYNWY

. | I > [| | |
o e B I I O
| | A |
A [[[]] 14
A |
‘Wl
Al I}
Y
| [N
. . . . /IEEEEEA
Sty

I
il

Isisis)
e
-y

&l ks valva
fgmil
-
o
=
-

Arithmetic Logic Modules

L L]
L L] EEEEEEES EEEEEEEEEEEEEEEEEEEEEEEE .

ENEEEEEEEEEEEEEYF & IJEEEEEEEEEEE Y | | | |

| | |

MY Y WYY YN NYYYN NN

N
R

[

il
n n

ALAARALALLLIER RLLARLLRLL]

* Implement arbitrary logic functions

W

Programmable Interconnect

= Programmable routing that can build
arbitrary topologies

Programmable Solutions Group

FPGA Hardware Design

State Machines

Datapaths

-

o

L

~

—

33

O

=
L
e "
A
Ol

125

250

Hardware Design Entry Complexity

Traditional description of these circuits is done through Hardware Design
Languages such as VHDL or Verilog.

Incredibly detailed design must be done before a first working version is possible
= Cycle by cycle behavior must be specified for every register in the design

= The complete flexibility of the FPGA means that the designer needs to specify all aspects
of the hardware circuit

— Buffering, Arbitration, IP Core interfacing, etc

Programmable Solutions Group

Why OpenCL on FPGAs

Intel FPGA SDK for OpenCL is an
LLVM-based compiler that raises the
level of abstraction for FPGA design
to make it accessible to more people.

FPGASs vs CPUs

FPGAs are dramatically different than CPUs
» Massive fine-grained parallelism

« Complete configurability

« Huge internal bandwidth

* No callstack

* No dynamic memory allocation

« Very different instruction costs

* No fixed number of program registers

* No fixed memory system

« Much more flexibility with data types

Targeting an Architecture

In a CPU, the program is mapped to a fixed architecture
In an FPGA, there is NO fixed architecture

The program defines the architecture

Programmable Solutions Group

1. Computation in Space

A simple 3-address CPU

il

PC — Fetch
Instruction
Op
Val

il

LdAddr

Load

A 4

LdData

Store

Programmable Solutions Group

Registers

—

Aaddr
—

Baddr
—>

Caddr

—»

—

/Yy
StData

CWriteEnabIeI

Op

A

Load memory value into register

LdAddr LdData StAddr
PC Fetch : Load » Store
T stbata
Instruction Op
Op Registers |
| Aaddr ALU !
— > ! !
A ! " ! C
Val | “ Baddr P " i
! —\/ 1 '
Caddr B
e
CWriteEnable CData T

Op'

Programmable Solutions Group

Add two registers, store result in register

il I

LdAddr LdData StAddr
PC Fetch » Load » Store
T stbata
Instruction Op
Registers
Op g : """""""""""""""" i """" i
| Aaddr ALU
: R ,
—
Val | “ Baddr A g C
Caddr B
=
CWriteEnable CData 7 TTTTTTTTTTTTTmTTTTommmTooo
Op

Programmable Solutions Group

A simple program

Mem[100] += 42 * Mem[101]

CPU Iinstructions:

Programmable Solutions Grou

p

RO < Load Mem[100]
R1 < Load Mem[101]
R2 < Load #42

R2 < Mul R1, R2

RO < Add R2, RO
Store RO - Mem[100]

CPU activity, step by step

=

RO ¢ Load Mem[100] . 3,]
S Time
R1 < Load Mem[101] ¢ g{ﬂ
L 1
it
R2 < Load #42 . 4 :

R2 & Mul R1, R2 = B tm
g 2 v
P
1l

LA |
Store RO > Mem[100] T L i

Programmable Solutions Group

Unroll

Programmable Solutions Grou

the CPU hardware...

RO < Load Mem[100]

i-l.

R1 < Load Mem[101] ¢ | gﬁ
NG]
R2 < Load #42 - wm

R2 < Mul R1, R2 ol B tm
L1 g
RO < Add R2, RO s ﬁj m
P .
L1 |

NB/
Store RO - Mem[100] 11 [. IL i

p

Space

... and specialize by position

g_m 1. Instructions are fixed.

Remove “Fetch”
R1 € Load Mem[101] ¢ | gﬁ
I
R2 €< Load #42 - wm

RO < Load Mem[100]

i-l.

R2 < Mul R1, R2 g, B tm
Lo g
RO < Add R2, RO — L ﬁj m
P .

J

LA)
Store RO > Mem[100] T L *

Programmable Solutions Group

... and specialize

| il
RO €< Load Mem[100] 1 ﬂ . .
\ | 1. Instructions are fixed.
N Remove “Fetch”
N 2. Remove unused ALU ops
R1 < Load Mem[101] - !
\
L 1
L
R2 < Load #42 \Dﬂﬁm
<l |
1 1

R2 € Mul R1, R2 5 tm
1.I
RO € Add R2, RO ﬁ Eim

4 |
Store RO - Mem[100] WL J

Programmable Solutions Group

... and specialize

RO € Load Mem|[100 1 . .
[100] \ . 1. Instructions are fixed.

Remove “Fetch”
Remove unused ALU ops
Remove unused Load / Store

N

R1 < Load Mem[101]

W

R2 €< Load #42

R2 €< Mul R1, R2

RO < Add R2, RO R

Store RO - Mem[100]

Programmable Solutions Group

... and specialize

RO < Load Mem[100]

R1 < Load Mem[101]
R2 < Load #42

R2 €< Mul R1, R2

RO € Add R2, RO

Store RO - Mem[100]

Programmable Solutions Group

I —

W

Instructions are fixed.
Remove “Fetch”

Remove unused ALU ops
Remove unused Load / Store
Wire up registers properly!
And propagate state.

... and specialize

RO < Load Mem[100]

R1 < Load Mem[101]

R2 €< Load #42

R2 €< Mul R1, R2

RO € Add R2, RO

Store RO - Mem[100]

Programmable Solutions Group

W

Instructions are fixed.
Remove “Fetch”

Remove unused ALU ops
Remove unused Load / Store
Wire up registers properly!
And propagate state.
Remove dead data.

Optimize the Datapath

RO < Load Mem[100]

R1 < Load Mem[101]

R2 €< Load #42

R2 €< Mul R1, R2

RO € Add R2, RO

Store RO - Mem[100]

Programmable Solutions Group

W

o 01

Instructions are fixed.
Remove “Fetch”

Remove unused ALU ops
Remove unused Load / Store
Wire up registers properly!
And propagate state.
Remove dead data.
Reschedule!

Data parallel kernel

__kernel void

sum(__global const float *a,
__global const float *b,
__global float *answer)

{
int xid = get global id(@);
answer[xid] = a[xid] + b[xid];

}

float *a = O 1 2 3 4 5 6 V4

float *b

/7 6 5 4 3 2 1 O

float *answer

1
~
~
~
~
~
~
~
~

Programmable Solutions Group

Example Datapath for Vector Add

8 work items for vector add example

7 o 1 2 3 4 5 6 7

an I

Load Load T

ﬁ Thread IDs

On each cycle the portions of the
datapath are processing different threads

+

While thread 2 is being loaded, thread 1
IS being added, and thread O is being
stored

Store

Programmable Solutions Group

Example Datapath for Vector Add

8 work items for vector add example

1 2 3 4 5 6 7

) os)}

Load Load T
Thread IDs

On each cycle the portions of the
datapath are processing different threads

+

While thread 2 is being loaded, thread 1
IS being added, and thread O is being
stored

Store

Programmable Solutions Group

Example Datapath for Vector Add

8 work items for vector add example

2 3 4 S5 6 7

A 4
o R
Load 1(Load T
ﬂ]- 0 Thread IDs

On each cycle the portions of the
datapath are processing different threads

+

While thread 2 is being loaded, thread 1
IS being added, and thread O is being
stored

Store

Programmable Solutions Group

Example Datapath for Vector Add

8 work items for vector add example

3 4 5 6 7

) .

Load 1 (Load T
ﬂj— 1 Thread IDs
\1 / On each cycle the portions of the
datapath are processing different threads

While thread 2 is being loaded, thread 1
IS being added, and thread O is being
stored

10 +

Store

Programmable Solutions Group

Example Datapath for Vector Add

8 work items for vector add example

4 5 6 7

4
- _J 3k)
Load 1 { Load T
ﬂj— 2 Thread IDs
\-i v / On each cycle the portions of the
1 datapath are processing different threads
While thread 2 is being loaded, thread 1

IS being added, and thread O is being
stored

Store

Programmable Solutions Group

Hardware block
containing all PHIs.

Real scheduling example

Cycle # at which instruction

—

-+ O

// OpenCL kernel J Three GEPs are executed

starts executing. \ at the same time.
kernel void example (™ 1 ™
global float * restrict in, l
glObal float * restrict in2, R Global Load | Global Load /J Two loads (and one store
- stall-able stall-able
global float * restrict out) { . SR b.elow) are separate
l pieces of hardware,
0t k= £ alobal id(0): 4 B« execute concurrently for
in = ge _g ObLa _l ()/ l t\\t@hread
float x = in[k]; ~—
float y = in2[k]; 12 oo i Special hardware-only

//

— . —— | —~=L_| | optimization construct.
out[k] = x + (y + 1.0£)/ | pgpendencies between LJ/ l _p

} instructions are constraints 16 ——~floating-point add e e
to the scheduler. l depend on each other,
19 o execute sequentially for
l l | this thread.

Global Store

stall-able Contains inter-BB branch
l | control or ‘ret.

% branch for
- Block0 j

Programmable Solutions Group

Compiler Flow

Compiler Flow

Intel FPGA SDK FPGA

Source Code . :
for OpenCL Programming File

kernel void
sum(global float *a,

global float *b,
global float *c) AOC
{
int gid = get_global_id(@);
c[gid] = a[gid] + b[gid];

o R~
LS X! . g & |82z
2 e @ .

Design File

Clang)| OPT [2)| LLC [>D[> &\(3

QUARTUS'II

S i e B —

BdcMM IR 1S used to desprik Quartus is FPGA CAD Tool
C@Ert& R&L@Qj&u E@eétp@Q.LIAC t":) th| Runs hardware synthesis, place, route, timing

datapath and produces Verilog HDL analysis and more. Produces FPGA
programming bitstream. Takes hours.

Programmable Solutions Group

intel) |

Example Compiler
Optimizations

Branch Conversion

Control flow Is expensive.

Instead, execute both sides of a branch, pick the result for the “true” path, and
predicate commands that have side-effects.

If a function has no loops, the whole function loses all branches.

Loops lose all internal branches.

1. X = W;

2. 1f (cond) { X temp = X + 2;

3. X += 2; ‘ X = cond ? X temp : W;

4, arraylz] = Y; arrayl[z] = Y_only 1f cond
5.

Programmable Solutions Group

Local memory address space splitting

FPGAs lack seamless memory hierarchy that CPUs have.

We use memory address spaces to distinguish different memory locations: on-chip,
off-chip, and special types of off-chip memory (e.g. constant, QDR, HMC).

On-chip (aka local memory) is further split into multiple address spaces based on
access patterns for much better implementation efficiency:

space 6
int local mem user(..) { space 5
int a[SIZE];
int b[SIZE]; :>
<code that accesses al[]> space 7
<code that accesses b[]>
} -

Split is possible only if compiler can prove that pointers to a[] and b[] never mix.

Optimizing Bit Swizzling

Bit swizzling with compile-time known pattern (e.g. bit reversal) is free on FPGA.

int bit reverse(int x) {
int output = 0; input
#fpragma unroll
for (int i = 0; 1 < 32; i++) {
output <<= 1;
if (x & 1) output |= 1;
x >>= 1 output
}

return output;

Without optimization, IR above is a very expensive tree of ORs and ANDs.

Compiler detects such an IR tree and turns it into a single shufflevector instruction.

Programmable Solutions Group

3
. L
O
O
P
=
Ipel
n
Ip
g

Data-Parallel Execution

On the FPGA, we use pipeline parallelism to achieve acceleration

kernel void

sum(global const float *a,
global const float *b,
global float *c)

{
int xid = get _global id(©9);
c[xid] = a[xid] + b[xid];

}

Threads execute in an embarrassingly parallel manner.

Ideally, all parts of the pipeline are active at the same time.

Programmable Solutions Group (||'Ite| l 39

Data-Parallel Execution - drawbacks

Difficult to express programs which have partial dependencies during execution

kernel void

sum(global const float *a,
global const float *b,
global float *c)

{
int xid = get _global id(©9);
c[xid] = c[xid-1] + b[xid];

¥

Would require complicated hardware and new language semantics to describe the
desired behavior

Programmable Solutions Group (||'Ite| l 40

Loop-pipelining

Allow users to express programs as a single-thread

for (int i=1; i < n; i++) {
c[i] = c[i-1] + b[i];
}

Pipeline parallelism still leveraged to efficiently execute loops via loop pipelining —
multiple loop iterations are executed concurrently.

Programmable Solutions Group

Loop Pipelining Example

No Loop Pipelining With Loop Pipelining
0 0
[]

[]
|
Ii:2I

] 1)

Finishes Faster because lterations
Are Overlapped

1.

No Overlap of Iterations!

Looks almost like multi-
threaded execution!

=
S
Wy

=

Clock Cycles
Clock Cycles

Loop Pipelining enables Pipeline Parallelism AND the
communication of state information between iterations.
Programmable Solutions Group @ l 42

Loop-Carried Dependencies

Loop-carried dependencies are dependencies where one iteration of the loop
depends upon the results of another iteration of the loop

kernel void state_machine(ulong n)

{

t_state_vector state = initial_state();

y = process
write output(y);

The variable state in iteration 1 depends on the value from iteration O.

Programmable Solutions Group (||'Ite| l 44

Loop-Carried Dependencies

To achieve acceleration, we pipeline each iteration of a loop with loop-carried
dependencies

= Analyze any dependencies between iterations

= Schedule these operations

= Launch the next iteration as soon as the critical dependency is calculated

Programmable Solutions Group

kernel void state_machine(ulong n)

{

t_state_vector state = initial_state();

y = process
write output(y);

‘ | At this point, we can
launch the next
I iteration

Trouble with Loop-Carried Dependencies

Many things can go wrong with loop pipelining:
= Loop-carried dependency takes too long to compute.

= Loop iterations may get out of order.

Conseqguences of having a loop-carried dependency are severe:

» |f introduce dependency on global location: loop initialization internal can go from 1 to ~70.
— That’s 70x drop in performance!

= The compiler has to be good at analyzing and reporting these dependencies!

Programmable Solutions Group

LLVM: Benefits & Challenges

Benefits

LLVM Is awesome!

Challenges

Our instruction costs are wildly different from CPUSs.

Well formed loops are extremely important to us but ...

= Qur ideal loop form is not the same as for CPU. Never want loops replicated or put inside a
condition. Often no point in hoisting If there is no dependency.

Need many custom intrinsics to better model our hardware:
= |Load/store units with additional arguments: predicates, byte-enables, dependencies.
= Channels to express communication between parallel tasks.

Have to use debug data to carry additional information:
» Have “styles” of load/store units and even multipliers (high throughput, low area)

Can’t express instruction-level, block-level, and task-level parallelisms:
= Only decide on this in the backend, and it’s late or very expensive to do optimizations then.

Programmable Solutions Group (||'Ite| l pile]

Thank You

