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FPGAs are Everywhere!
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Spectrum of approaches to high performance
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What’s in my FPGA?
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DSPs

 Dedicated single-precision floating point 

multiply and accumulators

Block RAMs

 Small embedded memories that can be 

stitched to form an arbitrary memory 

system

Arithmetic Logic Modules

 Implement arbitrary logic functions

Programmable Interconnect

 Programmable routing that can build 

arbitrary topologies

X

+
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FPGA Hardware Design
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Hardware Design Entry Complexity

Traditional description of these circuits is done through Hardware Design 

Languages such as VHDL or Verilog.

Incredibly detailed design must be done before a first working version is possible

 Cycle by cycle behavior must be specified for every register in the design

 The complete flexibility of the FPGA means that the designer needs to specify all aspects 

of the hardware circuit

– Buffering, Arbitration, IP Core interfacing, etc
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Why OpenCL on FPGAs
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ASIC

FPGA 
Programmers

Parallel

Programmers

Standard CPU Programmers 

Intel FPGA SDK for OpenCL is an 

LLVM-based compiler that raises the 

level of abstraction for FPGA design 

to make it accessible to more people.
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FPGAs vs CPUs
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FPGAs are dramatically different than CPUs

• Massive fine-grained parallelism

• Complete configurability

• Huge internal bandwidth

• No callstack

• No dynamic memory allocation

• Very different instruction costs

• No fixed number of program registers

• No fixed memory system

• Much more flexibility with data types
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Targeting an Architecture

11

In a CPU, the program is mapped to a fixed architecture

In an FPGA, there is NO fixed architecture

The program defines the architecture
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B
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A simple 3-address CPU
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Load memory value into register
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Add two registers, store result in register
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A simple program
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Mem[100] += 42 * Mem[101]

CPU instructions:

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]
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CPU activity, step by step
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A

A

A

A

A

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]
A

Time
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Unroll the CPU hardware…
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A

A

A

A

A

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]
A

Space
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… and specialize by position
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A

A

A

A

A

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]
A

1. Instructions are fixed.  

Remove “Fetch”
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… and specialize
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A

A

A

A

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]
A

1. Instructions are fixed. 

Remove “Fetch”

2. Remove unused ALU ops
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… and specialize
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A

A

A

A

A

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]
A

1. Instructions are fixed. 

Remove “Fetch”

2. Remove unused ALU ops

3. Remove unused Load / Store
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… and specialize
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R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]

1. Instructions are fixed. 

Remove “Fetch”

2. Remove unused ALU ops

3. Remove unused Load / Store

4. Wire up registers properly!  

And propagate state.
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… and specialize
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R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]

1. Instructions are fixed. 

Remove “Fetch”

2. Remove unused ALU ops

3. Remove unused Load / Store

4. Wire up registers properly!  

And propagate state.

5. Remove dead data.
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Optimize the Datapath
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R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]

1. Instructions are fixed. 

Remove “Fetch”

2. Remove unused ALU ops

3. Remove unused Load / Store

4. Wire up registers properly!  

And propagate state.

5. Remove dead data.

6. Reschedule!
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Data parallel kernel
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__kernel void
sum(__global const float *a,
__global const float *b,
__global float *answer)
{
int xid = get_global_id(0);
answer[xid] = a[xid] + b[xid];
}

float *a =

float *b =

float *answer =

0 1 2 3 4 5 6 7

7 6 5 4 3 2 1 0

7 7 7 7 7 7 7 7

__kernel void sum( … );
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Example Datapath for Vector Add
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On each cycle the portions of the 

datapath are processing different threads

While thread 2 is being loaded, thread 1 

is being added, and thread 0 is being 

stored

Load Load

Store

0 1 2 3 4 5 6 7

8 work items for vector add example

+

Thread IDs
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Example Datapath for Vector Add
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On each cycle the portions of the 

datapath are processing different threads

While thread 2 is being loaded, thread 1 

is being added, and thread 0 is being 
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Example Datapath for Vector Add
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On each cycle the portions of the 

datapath are processing different threads

While thread 2 is being loaded, thread 1 

is being added, and thread 0 is being 
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Example Datapath for Vector Add
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On each cycle the portions of the 

datapath are processing different threads

While thread 2 is being loaded, thread 1 

is being added, and thread 0 is being 

stored
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Example Datapath for Vector Add
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On each cycle the portions of the 

datapath are processing different threads

While thread 2 is being loaded, thread 1 

is being added, and thread 0 is being 

stored

Load Load
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Real scheduling example

// OpenCL kernel

kernel void example (

global float * restrict in, 

global float * restrict in2, 

global float * restrict out) {

int k = get_global_id(0);

float x = in[k];

float y = in2[k];

out[k] = x + (y + 1.0f);

}

31

Three GEPs are executed 

at the same time.

Cycle # at which instruction 

starts executing.

Two loads (and one store 

below) are separate

pieces of hardware, 

execute concurrently for 

this thread.

Two floating-point adders

depend on each other, 

execute sequentially for 

this thread.

Hardware block

containing all PHIs.

Special hardware-only 

optimization construct.

Contains inter-BB branch 

control or ‘ret.’

Dependencies between 

instructions are constraints 

to the scheduler.
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Compiler Flow
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AOC

FPGA 

Programming File
kernel void
sum(global float *a,

global float *b,
global float *c)

{
int gid = get_global_id(0);
c[gid] = a[gid] + b[gid];

}

Source Code Intel FPGA SDK

for OpenCL

LLCOPTClang

Verilog 

Design File

Frontend

Parses OpenCL extensions and intrinsics to 

produce LLVM IR

Clang OPT

Middle end

Clang –O3 optimizations followed by 

numerous custom passes to target the FPGA 

architecture

LLC

Backend

Creates and schedules an elastic pipelined 

datapath and produces Verilog HDL

LLVM IR is used to describe a custom 

architecture specific to the program

Quartus is FPGA CAD Tool

Runs hardware synthesis, place, route, timing 

analysis and more. Produces FPGA 

programming bitstream. Takes hours.
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Branch Conversion
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Control flow is expensive.

Instead, execute both sides of a branch, pick the result for the “true” path, and 

predicate commands that have side-effects. 

If a function has no loops, the whole function loses all branches.

Loops lose all internal branches.

1. X = W;

2. if (cond) {

3.    X += 2;

4.    array[z] = Y;

5. }

X_temp = X + 2;

X = cond ? X_temp : W;

array[z] = Y only if cond

?: operator is a mux 

(selector) in hardware.

Single IR instruction to store only if 

condition is true. “cond” is predicate on 

the store unit. Requires store IR 

instruction to accept predicate.
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Local memory address space splitting
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FPGAs lack seamless memory hierarchy that CPUs have. 

We use memory address spaces to distinguish different memory locations: on-chip, 

off-chip, and special types of off-chip memory (e.g. constant, QDR, HMC).

On-chip (aka local memory) is further split into multiple address spaces based on 

access patterns for much better implementation efficiency:

Split is possible only if compiler can prove that pointers to a[] and b[] never mix.

int local_mem_user(…) {

int a[SIZE];

int b[SIZE];

<code that accesses a[]>

<code that accesses b[]>

}

a [ ]

b [ ]

a [ ]

b [ ]

space 5
space 6

space 7
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Optimizing Bit Swizzling
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Bit swizzling with compile-time known pattern (e.g. bit reversal) is free on FPGA.

Without optimization, IR above is a very expensive tree of ORs and ANDs. 

Compiler detects such an IR tree and turns it into a single shufflevector instruction.

int bit_reverse(int x) {

int output = 0;

#pragma unroll 

for (int i = 0; i < 32; i++) {

output <<= 1;

if (x & 1) output |= 1;

x >>= 1;

}

return output;

}

input

output
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Data-Parallel Execution
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On the FPGA, we use pipeline parallelism to achieve acceleration

Threads execute in an embarrassingly parallel manner.

Ideally, all parts of the pipeline are active at the same time.

kernel void
sum(global const float *a,

global const float *b,
global float *c)

{
int xid = get_global_id(0);
c[xid] = a[xid] + b[xid];

}

Load Load

Store

+
0

1

2
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Data-Parallel Execution - drawbacks
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Difficult to express programs which have partial dependencies during execution

Would require complicated hardware and new language semantics to describe the 
desired behavior

Load Load

Store

+
0

1

2kernel void
sum(global const float *a,

global const float *b,
global float *c)

{
int xid = get_global_id(0);
c[xid] = c[xid-1] + b[xid];

}
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Loop-pipelining
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Allow users to express programs as a single-thread

Pipeline parallelism still leveraged to efficiently execute loops via loop pipelining –

multiple loop iterations are executed concurrently.

for (int i=1; i < n; i++) {
c[i] = c[i-1] + b[i];

}
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Loop Pipelining Example
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No Loop Pipelining

i0

i1

i2

C
lo

c
k
 C

y
c
le

s

No Overlap of Iterations!
Finishes Faster because Iterations

Are Overlapped

i0

i1

i2

i3

i4

i5

C
lo

c
k
 C

y
c
le

s

Looks almost like multi-

threaded execution!

With Loop Pipelining

Loop Pipelining enables Pipeline Parallelism AND the 

communication of state information between iterations.
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Loop-Carried Dependencies
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Loop-carried dependencies are dependencies where one iteration of the loop 

depends upon the results of another iteration of the loop

The variable state in iteration 1 depends on the value from iteration 0. 

kernel void state_machine(ulong n)
{
t_state_vector state = initial_state();
for (ulong i=0; i<n; i++) {
state = next_state( state );
unit y = process( state );
write_output(y);

}
}
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Loop-Carried Dependencies
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To achieve acceleration, we pipeline each iteration of a loop with loop-carried 

dependencies

 Analyze any dependencies between iterations

 Schedule these operations

 Launch the next iteration as soon as the critical dependency is calculated

At this point, we can 

launch the next 

iteration

kernel void state_machine(ulong n)
{
t_state_vector state = initial_state();
for (ulong i=0; i<n; i++) {
state = next_state( state );
unit y = process( state );
write_output(y);

}
}
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Trouble with Loop-Carried Dependencies
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Many things can go wrong with loop pipelining:

 Loop-carried dependency takes too long to compute.

 Loop iterations may get out of order.

Consequences of having a loop-carried dependency are severe:

 If introduce dependency on global location: loop initialization internal can go from 1 to ~70.

– That’s 70x drop in performance!

 The compiler has to be good at analyzing and reporting these dependencies!
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Benefits

LLVM is awesome!
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Challenges
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Our instruction costs are wildly different from CPUs.

Well formed loops are extremely important to us but …

 Our ideal loop form is not the same as for CPU. Never want loops replicated or put inside a 

condition. Often no point in hoisting if there is no dependency.

Need many custom intrinsics to better model our hardware:

 Load/store units with additional arguments: predicates, byte-enables, dependencies. 

 Channels to express communication between parallel tasks.

Have to use debug data to carry additional information:

 Have “styles” of load/store units and even multipliers (high throughput, low area)

Can’t express instruction-level, block-level, and task-level parallelisms:

 Only decide on this in the backend, and it’s late or very expensive to do optimizations then.
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