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FPGAs are Everywhere!
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Spectrum of approaches to high performance
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Whatôs in my FPGA?
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DSPs

ÁDedicated single-precision floating point 

multiply and accumulators

Block RAMs

ÁSmall embedded memories that can be 

stitched to form an arbitrary memory 

system

Arithmetic Logic Modules

Á Implement arbitrary logic functions

Programmable Interconnect

ÁProgrammable routing that can build 

arbitrary topologies
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FPGA Hardware Design
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Hardware Design Entry Complexity

Traditional description of these circuits is done through Hardware Design 

Languages such as VHDL or Verilog.

Incredibly detailed design must be done before a first working version is possible

ÁCycle by cycle behavior must be specified for every register in the design

ÁThe complete flexibility of the FPGA means that the designer needs to specify all aspects 

of the hardware circuit

ÝBuffering, Arbitration, IP Core interfacing, etc
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Why OpenCL on FPGAs
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ASIC

FPGA 
Programmers

Parallel

Programmers

Standard CPU Programmers 

Intel FPGA SDK for OpenCL is an 

LLVM-based compiler that raises the 

level of abstraction for FPGA design 

to make it accessible to more people.
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FPGAs vs CPUs
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FPGAs are dramatically different than CPUs

ÅMassive fine-grained parallelism

ÅComplete configurability

ÅHuge internal bandwidth

ÅNo callstack

ÅNo dynamic memory allocation

ÅVery different instruction costs

ÅNo fixed number of program registers

ÅNo fixed memory system

ÅMuch more flexibility with data types
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Targeting an Architecture
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In a CPU, the program is mapped to a fixed architecture

In an FPGA, there is NO fixed architecture

The program defines the architecture
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A simple 3-address CPU
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Load memory value into register
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Add two registers, store result in register
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A simple program
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Mem[100] += 42 * Mem[101]

CPU instructions:

R0 ă Load Mem[100]

R1 ă Load Mem[101]

R2 ă Load #42

R2 ă Mul R1, R2

R0 ă Add R2, R0

Store R0 Ą Mem[100]
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CPU activity, step by step
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