
Dmitry Denisenko

Intel Programmable Solutions Group

November 13, 2016, LLVM-HPC3 SCô16, Salt Lake City, UT





Programmable Solutions Group

FPGAs are Everywhere!

Cellular

Basestations

Wireless LAN

Switches

Routers

Optical

Metro

Access

Broadband

Audio/video

Video display

Studio

Satellite

Broadcasting

Medical

Test equipment

Manufacturing

Card readers

Control systems

ATM

Navigation

Entertainment

Secure comm.

Radar

Guidance and control

Wireless

Networking

Wireline

Entertainment

Broadcast

Automotive

Instrumentation Military

Security & 

Energy Management

Servers

Mainframe

RAID

SAN

Copiers

Printers

MFP

Computers

Storage

Office 

Automation

Consumer 

Automotive

Test, Measurement, 

& Medical
Communications 

Broadcast

Military & 

Industrial

Computer & 

Storage



Programmable Solutions Group

Spectrum of approaches to high performance

4

Fine-Grained
Massively
Parallel
Arrays

FPGAsDSPsCPUs

Single Cores
Coarse-Grained
Massively
Parallel
Processor
Arrays

Multi -Cores
Coarse-Grained
CPUs and DSPs

Multi-Cores Arrays



Programmable Solutions Group

Whatôs in my FPGA?

5

DSPs

ÁDedicated single-precision floating point 

multiply and accumulators

Block RAMs

ÁSmall embedded memories that can be 

stitched to form an arbitrary memory 

system

Arithmetic Logic Modules

Á Implement arbitrary logic functions

Programmable Interconnect

ÁProgrammable routing that can build 

arbitrary topologies

X

+



Programmable Solutions Group 6

FPGA Hardware Design

Idle

Request

Ack

Do 
Useful

Work

Done

State Machines Datapaths

-1
0
1

=

Idle

Request

Ack

Do 
Useful

Work

Done
-1
0
1

=

S
O

C
 I

n
te

rc
o
n
n
e
c
t

125

MHz

250

MHz

B
ri
d
g
e

P
C

Ie
C

o
re

200

MHz

400

MHz

C
o
n
tr

o
lle

r

M
e
m

o
ry

 P
H

Y



Programmable Solutions Group

Hardware Design Entry Complexity

Traditional description of these circuits is done through Hardware Design 

Languages such as VHDL or Verilog.

Incredibly detailed design must be done before a first working version is possible

ÁCycle by cycle behavior must be specified for every register in the design

ÁThe complete flexibility of the FPGA means that the designer needs to specify all aspects 

of the hardware circuit

ÝBuffering, Arbitration, IP Core interfacing, etc

7



Programmable Solutions Group

Why OpenCL on FPGAs

8

ASIC

FPGA 
Programmers

Parallel

Programmers

Standard CPU Programmers 

Intel FPGA SDK for OpenCL is an 

LLVM-based compiler that raises the 

level of abstraction for FPGA design 

to make it accessible to more people.



Programmable Solutions Group

FPGAs vs CPUs

10

FPGAs are dramatically different than CPUs

ÅMassive fine-grained parallelism

ÅComplete configurability

ÅHuge internal bandwidth

ÅNo callstack

ÅNo dynamic memory allocation

ÅVery different instruction costs

ÅNo fixed number of program registers

ÅNo fixed memory system

ÅMuch more flexibility with data types



Programmable Solutions Group

Targeting an Architecture

11

In a CPU, the program is mapped to a fixed architecture

In an FPGA, there is NO fixed architecture

The program defines the architecture



12



Programmable Solutions Group

B

A

A
ALU

A simple 3-address CPU

13

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData



Programmable Solutions Group

B

A

A
ALU

Load memory value into register

14

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData



Programmable Solutions Group

B

A

A
ALU

Add two registers, store result in register

15

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData



Programmable Solutions Group

A simple program

16

Mem[100] += 42 * Mem[101]

CPU instructions:

R0 ă Load Mem[100]

R1 ă Load Mem[101]

R2 ă Load #42

R2 ă Mul R1, R2

R0 ă Add R2, R0

Store R0 Ą Mem[100]



Programmable Solutions Group

CPU activity, step by step

17

A

A

A

A

A

R0 ă Load Mem[100]

R1 ă Load Mem[101]

R2 ă Load #42

R2 ă Mul R1, R2

R0 ă Add R2, R0

Store R0 Ą Mem[100]
A

Time




